November 19, 2019

Preparing the Military for a Role on an Artificial Intelligence Battlefield

By Megan Lamberth

The Defense Innovation Board—an advisory committee of tech executives, scholars, and technologists—has unveiled its list of ethical principles for artificial intelligence (AI). If adopted by the Defense Department, then the recommendations will help shape the Pentagon’s use of AI in both combat and non-combat systems. The board’s principles are an important milestone that should be celebrated, but the real challenge of adoption and implementation is just beginning. For the principles to have an impact, the department will need strong leadership from the Joint AI Center (JAIC), buy-in from senior military leadership and outside groups, and additional technical expertise within the Defense Department.

In its white paper, the board recognizes that the AI field is constantly evolving and that the principles it proposes represent guidelines the department should aim for as it continues to design and field AI-enabled technologies. The board recommends that the Defense Department should aspire to develop and deploy AI systems that are:

  1. Responsible. The first principle establishes accountability, putting the onus on the human being for not only the “development, deployment, [and] use” of an AI system, but most importantly, any “outcomes” that system produces. The burden rests on the human being, not the AI.
  2. Equitable. The second principle calls on the DoD to take “deliberate steps” to minimize “unintended bias” in AI systems. The rise of facial recognition technology and the subsequent issues of algorithmic biases show that the board is right to prioritize mitigating potential biases, particularly as the DoD continues to develop AI systems with national security applications.
  3. Traceable. The third principle addresses the need for technical expertise within the Defense Department to ensure that AI engineers have an “appropriate understanding of the technology” and the insight of how a system arrives at its outcome.
  4. Reliable. The board’s fourth principle essentially says that an AI system should do what it has been programmed to do within the domain it has been programmed to operate in. AI engineers should then conduct tests to ensure the “safety, security, and robustness” of the system across its “entire life cycle.”
  5. Governable. The fifth principle tackles the need for fail-safes in situations where an AI system acts unexpectedly. The AI system should be able to “detect and avoid unintended harm,” and mechanisms should exist that allow “human or automated disengagement” for systems demonstrating “unintended escalatory” behavior.

Read the full article in The National Interest.

  • Podcast
    • August 16, 2021
    AI with military characteristics

    What does AI mean for military might, and how are debates over autonomous weapons unfolding in diplomatic backchannels? Robert O. Work and Elsa Kania join FT innovation editor...

    By Robert O. Work & Elsa B. Kania

  • Podcast
    • July 29, 2021
    Samuel Bendett on AI Development in Russia

    What is happening in Russia right now with regards to development of artificial intelligence? In today’s bingecast, Samuel Bendett and Robert J. Marks discuss Russian military...

    By Samuel Bendett

  • Video
    • July 22, 2021
    Artificial intelligence arms race does not exist

    Paul Scharre, former special assistant to the under secretary of defense for policy, now vice president and director of studies at the Center for a New American Security, spok...

    By Paul Scharre

  • Podcast
    • June 27, 2021
    Some foresight about the future of foresight

    Trying to predict the future is a timeless and time-consuming pursuit. Artificial Intelligence is increasingly being enlisted to the cause, but so too are “super-forecasters”...

    By Michael Horowitz

View All Reports View All Articles & Multimedia